Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2213271120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37159478

RESUMO

Marine picocyanobacteria Prochlorococcus and Synechococcus, the most abundant photosynthetic cells in the oceans, are generally thought to have a primarily single-celled and free-living lifestyle. However, while studying the ability of picocyanobacteria to supplement photosynthetic carbon fixation with the use of exogenous organic carbon, we found the widespread occurrence of genes for breaking down chitin, an abundant source of organic carbon that exists primarily as particles. We show that cells that encode a chitin degradation pathway display chitin degradation activity, attach to chitin particles, and show enhanced growth under low light conditions when exposed to chitosan, a partially deacetylated soluble form of chitin. Marine chitin is largely derived from arthropods, which underwent major diversifications 520 to 535 Mya, close to when marine picocyanobacteria are inferred to have appeared in the ocean. Phylogenetic analyses confirm that the chitin utilization trait was acquired at the root of marine picocyanobacteria. Together this leads us to postulate that attachment to chitin particles allowed benthic cyanobacteria to emulate their mat-based lifestyle in the water column, initiating their expansion into the open ocean, seeding the rise of modern marine ecosystems. Subsequently, transitioning to a constitutive planktonic life without chitin associations led to cellular and genomic streamlining along a major early branch within Prochlorococcus. Our work highlights how the emergence of associations between organisms from different trophic levels, and their coevolution, creates opportunities for colonizing new environments. In this view, the rise of ecological complexity and the expansion of the biosphere are deeply intertwined processes.


Assuntos
Quitosana , Prochlorococcus , Quitina , Ecossistema , Filogenia , Carbono , Plâncton/genética , Prochlorococcus/genética
2.
ISME J ; 10(12): 2946-2957, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27137127

RESUMO

The assimilation of organic nutrients by autotrophs, a form of mixotrophy, has been demonstrated in the globally abundant marine picocyanobacterial genera Prochlorococcus and Synechococcus. However, the range of compounds used and the distribution of organic compound uptake genes within picocyanobacteria are unknown. Here we analyze genomic and metagenomic data from around the world to determine the extent and distribution of mixotrophy in these phototrophs. Analysis of 49 Prochlorococcus and 18 Synechococcus isolate genomes reveals that all have the transporters necessary to take up amino acids, peptides and sugars. However, the number and type of transporters and associated catabolic genes differ between different phylogenetic groups, with low-light IV Prochlorococcus, and 5.1B, 5.2 and 5.3 Synechococcus strains having the largest number. Metagenomic data from 68 stations from the Tara Oceans expedition indicate that the genetic potential for mixotrophy in picocyanobacteria is globally distributed and differs between clades. Phylogenetic analyses indicate gradual organic nutrient transporter gene loss from the low-light IV to the high-light II Prochlorococcus. The phylogenetic differences in genetic capacity for mixotrophy, combined with the ubiquity of picocyanobacterial organic compound uptake genes suggests that mixotrophy has a more central role in picocyanobacterial ecology than was previously thought.


Assuntos
Prochlorococcus/genética , Água do Mar/microbiologia , Synechococcus/genética , Genoma Bacteriano , Genômica , Oceanos e Mares , Filogenia , Prochlorococcus/isolamento & purificação , Prochlorococcus/metabolismo , Synechococcus/isolamento & purificação , Synechococcus/metabolismo
3.
BMC Microbiol ; 13: 259, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24238386

RESUMO

BACKGROUND: Microbial ecologists often employ methods from classical community ecology to analyze microbial community diversity. However, these methods have limitations because microbial communities differ from macro-organismal communities in key ways. This study sought to quantify microbial diversity using methods that are better suited for data spanning multiple domains of life and dimensions of diversity. Diversity profiles are one novel, promising way to analyze microbial datasets. Diversity profiles encompass many other indices, provide effective numbers of diversity (mathematical generalizations of previous indices that better convey the magnitude of differences in diversity), and can incorporate taxa similarity information. To explore whether these profiles change interpretations of microbial datasets, diversity profiles were calculated for four microbial datasets from different environments spanning all domains of life as well as viruses. Both similarity-based profiles that incorporated phylogenetic relatedness and naïve (not similarity-based) profiles were calculated. Simulated datasets were used to examine the robustness of diversity profiles to varying phylogenetic topology and community composition. RESULTS: Diversity profiles provided insights into microbial datasets that were not detectable with classical univariate diversity metrics. For all datasets analyzed, there were key distinctions between calculations that incorporated phylogenetic diversity as a measure of taxa similarity and naïve calculations. The profiles also provided information about the effects of rare species on diversity calculations. Additionally, diversity profiles were used to examine thousands of simulated microbial communities, showing that similarity-based and naïve diversity profiles only agreed approximately 50% of the time in their classification of which sample was most diverse. This is a strong argument for incorporating similarity information and calculating diversity with a range of emphases on rare and abundant species when quantifying microbial community diversity. CONCLUSIONS: For many datasets, diversity profiles provided a different view of microbial community diversity compared to analyses that did not take into account taxa similarity information, effective diversity, or multiple diversity metrics. These findings are a valuable contribution to data analysis methodology in microbial ecology.


Assuntos
Biota , Ecologia/métodos , Biologia Computacional/métodos
4.
BMC Genomics ; 14: 485, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23865623

RESUMO

BACKGROUND: Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. RESULTS: We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. CONCLUSION: The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.


Assuntos
Biofilmes , Genômica , Mineração , Thermoplasmales/genética , Thermoplasmales/fisiologia , Aerobiose/genética , Aldeído Oxirredutases/genética , Aminoácidos/biossíntese , Parede Celular/metabolismo , Resistência a Medicamentos/genética , Transporte de Elétrons , Metabolismo Energético/genética , Fermentação , Genes Arqueais/genética , Ilhas Genômicas/genética , Glioxilatos/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Metais/toxicidade , Imagem Molecular , Anotação de Sequência Molecular , Complexos Multienzimáticos/genética , Filogenia , Thermoplasmales/citologia , Thermoplasmales/metabolismo , Trealose/biossíntese
5.
Environ Sci Technol ; 47(12): 6500-9, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23713472

RESUMO

Vanadium is a commercially important metal that is released into the environment by fossil fuel combustion and mining. Despite its prevalence as a contaminant, the potential for vanadium bioremediation has not been widely studied. Injection of acetate (as a carbon source) directly into an aquifer to biostimulate contaminated sediments in Colorado, United States, resulted in prolonged removal of aqueous vanadium for a period of at least two years. To further investigate this process, we simultaneously added acetate and vanadate (V(5+)) to columns that were packed with aquifer sediment and inserted into groundwater wells installed on the Colorado River floodplain. This allowed evaluation of the microbial response to amendments in columns that received an influx of natural groundwater. Our results demonstrate the removal of up to 99% of the added V(5+)(aq) and suggest microbial mediation. Most probable number measurements demonstrate up to a 50-fold increase in numbers of V(5+)-reducing cells in vanadium-amended columns compared to controls. 16S rRNA gene sequencing indicates decreased diversity and selection for specific taxa in columns that received vanadate compared to those that did not. Overall, our results demonstrate that acetate amendment can be an effective strategy for V removal, and that V bioremediation may be a viable technology.


Assuntos
Biodegradação Ambiental , Vanadatos/metabolismo , Acetatos
6.
Appl Environ Microbiol ; 78(23): 8321-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001646

RESUMO

Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.


Assuntos
Archaea/metabolismo , Archaea/fisiologia , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Biota , Carbono/metabolismo , Aerobiose , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Microbiologia Ambiental , Genes de RNAr , Processos Heterotróficos , Concentração de Íons de Hidrogênio , Metagenoma , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
PLoS Comput Biol ; 7(10): e1002230, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028637

RESUMO

During microbial evolution, genome rearrangement increases with increasing sequence divergence. If the relationship between synteny and sequence divergence can be modeled, gene clusters in genomes of distantly related organisms exhibiting anomalous synteny can be identified and used to infer functional conservation. We applied the phylogenetic pairwise comparison method to establish and model a strong correlation between synteny and sequence divergence in all 634 available Archaeal and Bacterial genomes from the NCBI database and four newly assembled genomes of uncultivated Archaea from an acid mine drainage (AMD) community. In parallel, we established and modeled the trend between synteny and functional relatedness in the 118 genomes available in the STRING database. By combining these models, we developed a gene functional annotation method that weights evolutionary distance to estimate the probability of functional associations of syntenous proteins between genome pairs. The method was applied to the hypothetical proteins and poorly annotated genes in newly assembled acid mine drainage Archaeal genomes to add or improve gene annotations. This is the first method to assign possible functions to poorly annotated genes through quantification of the probability of gene functional relationships based on synteny at a significant evolutionary distance, and has the potential for broad application.


Assuntos
Genes Arqueais , Genes Bacterianos , Modelos Genéticos , Anotação de Sequência Molecular/métodos , Sintenia/genética , Proteínas Arqueais/genética , Proteínas Arqueais/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Sequência Conservada/genética , Evolução Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...